В этой статье я решил сравнить два популярных сервиса ChatGPT и Claude.ai и посмотреть, как они справляются с задачей поиска торговых неэффективностей на ноябрь 2024 года. Я оценил их функционал и удобство использования, чтобы выяснить, какой из них лучше подходит для анализа данных и разработки прибыльной торговой стратегии.
Чтобы упростить сбор данных, я воспользовался Гидрой — это, пожалуй, лучший бесплатный инструмент для загрузки рыночных данных.
Я скачал минутные данные по BTCUSDT за 2024 год, которые составили примерно 25 МБ, и выгрузил их в CSV-файл.
В последние годы использование искусственного интеллекта (ИИ) стало популярной темой в трейдинге. Многие платформы обещают невероятные результаты благодаря ИИ, но насколько это соответствует действительности?
Недавняя новость от StockSharp, где команда рассказала о применении ИИ для создания коннекторов к криптобиржам, заставила меня задуматься: насколько искусственный интеллект действительно уместен и применим в трейдинге на текущий момент? С этой мыслью я решил изучить рынок и выяснить, что же на самом деле предлагают платформы, которые рекламируют использование ИИ.
Большинство решений, которые я обнаружил в процессе исследования, оказались не полноценными платформами для анализа и разработки собственных стратегий, а готовыми продуктами — роботами. Примером таких решений являются продукты, описанные в статье на Techopedia. Эти роботы представляют собой закрытые системы, «черные ящики», где пользователю остается лишь верить, что в их основе лежит ИИ. Однако пользователю не предоставляется возможность исследовать, тестировать или как-то модифицировать эти стратегии.
С развитием искусственного интеллекта (ИИ) и машинного обучения меняются не только технологии, но и способы их изучения. Особенно это заметно в области финансовых технологий, где программирование торговых роботов играло ключевую роль в автоматизации торговли и принятии инвестиционных решений. Однако с появлением новых ИИ-инструментов, многие считают, что традиционные курсы по программированию торговых роботов могут стать менее актуальными. В этом лонгриде мы рассмотрим, почему это происходит и какие изменения стоит ожидать в ближайшем будущем.
Одним из главных факторов, влияющих на снижение необходимости традиционного обучения программированию торговых роботов, является автоматизация самой разработки торговых стратегий. Ранее, для создания успешного торгового робота требовались глубокие знания в области программирования и алгоритмов. Разработка сложных торговых стратегий включала анализ данных, написание и тестирование кода, а также оптимизацию алгоритмов. Это подразумевало длительное и дорогостоящее обучение на специализированных курсах.
-- Настройки SEC_CODE = "SBER" -- Код инструмента CLASS_CODE = "TQBR" -- Код класса инструмента SHORT_MA_PERIOD = 10 -- Период короткой скользящей средней LONG_MA_PERIOD = 50 -- Период длинной скользящей средней QTY = 1 -- Количество лотов -- Переменные short_ma = {} long_ma = {} prices = {} position = 0 -- Текущая позиция: 0 - нет позиции, 1 - лонг, -1 - шорт -- Функция для расчета скользящей средней function calculate_ma(prices, period) local sum = 0 for i = #prices-period+1, #prices do sum = sum + prices[i] end return sum / period end -- Функция для обработки новых тиков function OnAllTrade(alltrade) if alltrade.sec_code == SEC_CODE and alltrade.class_code == CLASS_CODE then table.insert(prices, alltrade.price) if #prices >= LONG_MA_PERIOD then table.